
UCRL-JC-133263 -
PREPRINT

Benchmarking Pthreads Performance

B.R. de Supinski
J. May

This paper was prepared for submittal to the
1999 International Conference on

Parallel and Distributed Processing Techniques and Applications
Las Vegas, NV

June 28-July I,1999

April 27,1999

Since changes may beinBde before publication, this prep%nt is madk available with
.L-r :rI. -:.-A --*1. ̂... ---:--:-- -C.L-

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Benchmarking Pthreads Performance

Bronis R. de Supinski
Centerfor Applied Scient@ Computing

Lawrence Livermore National Laboratory
Livermore, CA 945.51

bronis@ Ilnl.gov

Abstract: The importance of the peeormance
of threads libraries is growing as clusters of shared
memory machines become more popular POSIX
threads, or Pthreads, is an industry threads library
standard. We have implemented the first Pthreads
benchmark suite. In addition to measuring basic thread
functions, such as threud creution, we apply the L.ogP
model to standard Pthreads communication mecha-
nisms. We present the results of our tests for several
hardware platforms. These results demonstrate that the
pelformance of existing Pthreads implementations var-
ies widely; parts of nearly all of these implementations
could be further optimized.

1. Introduction

With the growing popularity of
symmetric multiprocessors (SMPs), the
importance of the performance of Pthreads
libraries is increasing. However, no Pthreads
benchmark suite currently exists. We are
developing a benchmark suite that will fill this
void. This tool will be useful in predicting and
identifying performance problems of codes
that use Pthreads.

We are modifying a publicly available
MPI benchmark suite in order to measure
Pthreads performance. This approach will
allow us to eventually provide a benchmark
suite for measuring the performance of mixed
programming models for clusters of SMPs
that use both threads and message passing.
Our initial results from several SMP systems
demonstrate significant performance differ-
ences between existing Pthreads implementa-

John May
Center for Applied ScientiJic Computing

Lawrence Livermore National Laboratory
Livermore, CA 94551

johnmay@ llnl.gov

tions. Since hardware differences do not fully
explain these performance variations, optimi-
zations could improve the implementations.

2. Incorporating Threads Bench-
marks into SKaMPI

SKaMPl is an MPI benchmark suite
that provides a general framework for perfor-
mance analysis [7]. SKaMPI does not exhaus-
tively test the MPI standard. Instead, it
provides a simple interface to incorporate
additional measurements. This interface
provides extensive facilities for data
collection and test management, such as
dynamic selection of independent variable
values and of the number of trials to obtain an
accurate measurement at any single data
point. Thus, SKaMPI is an excellent starting
point for implementing our Pthreads
benchmark suite.

Nonetheless, several aspects of
SKaMPI are inappropriate for a Pthreads
benchmark suite. Since clock granularity
varies widely across systems, most bench-
marks time repeated measurement actions,
such as locking a mutex, and use the average
time per iteration to estimate the time that the
action takes. SKaMPI does not; instead it
assumes that the duration of an action is suffi-
ciently long to be measured individually.
Since this assumption is clearly inappropriate
for several important Pthreads actions, we

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract no. W-740%Eng-48.

have modified SKaMPI’s data collection
facilities to support multiple iterations of the
measurement action per timing.

The number of timings per data point
varies in SKaMPI. A measurement is repeated
until either a user-defined maximum number
of timings or the standard deviation’ of the
timings is less than a user-defined percentage
of their mean. The mean is the reported
measurement. This simple mechanism
ensures data points are a good estimate of the
average time to complete the measured
action. Several of our benchmarks are
symmetric. In these tests, the main thread and
a client thread both repeatedly perform
(essentially) the same action. All of our
benchmarks measure the elapsed time in the
main SKaMPI thread. In order to accom-
modate the dynamic number of timings per
data point, we terminate the client thread with
pthread-cancel in these tests instead of
exiting after a fixed number of iterations. This
cancellation mechanism introduces very little
overhead into the tests. If the client action
does not include a cancellation point (as
defined by Pthreads), the client calls
pthread-test-cancel after some large
number of repetitions. The main thread does
not start the next measurement until the client
acknowledges the cancel.

A significant factor in the perfor-
mance of many Pthreads functions is whether
or not the threads being measured are running
on the same CPU. Most vendors include a
mechanism to bind a thread to a specific CPU.
We implemented a set of macros that allow us
to vary the CPU binding of each participating
thread in each benchmark.

1. SKaMPI actually uses standard error,
which is the standard deviation divided by
the square root of the number of timings,
for the cutoff. Standard error converges
even when the standard deviation large. We
use standard deviation since it provides a
stricter test and the number of timings is
already limited.

Clock granularity motivates another
change to SKaMPI. Since SKaMPI is an MPI
benchmark suite, it uses the MPI-Wtime .
facility for its timings. However, the MPI
standard does not require that MPI-Wtime
use the best available clock; on some systems,
its resolution is as high as one millisecond.
Since system resources can severely restrict
the number of iterations per timing for some
Pthreads calls, we are replacing MPI-Wt ime
with macro-based calls to more fine-grained
clocks, which on many systems are the UNIX
get t imeo f day facility. However, on DEC
Alpha systems, we are implementing a
rollover-safe clock based on the hardware
cycle counter.

We have made several other changes
to the SKaMPI infrastructure, including
several bug fixes to its data point selection
and test restart facilities. We have also
extended it to support more than one
independent variable per data point, a facility
that we use to’ ensure threads are running on
different CPUs. We plan eventually to provide
a compiler switch that eliminates the need to
link with an MPI library; currently we simply
run our threads tests within a single MPI
process. However, we plan to retain the MPI
tests, as our overall goal is a benchmark suite
for an emerging programming model for SMP
clusters in which threads on the same node
communicate through shared memory and use
message passing for internode communi-
cation [5].

3. The Benchmarks

Our benchmarks measure several
significant components of Pthreads perfor-
mance. Some measure basic system
properties such as the time for thread creation
or the length of a timeslice. The remainder of
our tests measure thread communication and
synchronization mechanisms, such as
condition variables and mutexes. We describe
each benchmark in detail.

Our pthread-create benchmark
measures the time to recursively create A4
threads, where M is some large number. In
this benchmark, the main thread sets a shared
iteration count to zero, creates a thread and
waits on a condition variable. Each newly
created thread increments the iteration count
and compares it to M. If the count is M, the
thread signals the main thread. Otherwise, the
thread creates another thread and immediately
calls pthread-exit. The measurement
reported for this benchmark is the time taken
by the main thread divided by M. We report
results for when the threads are created either
detached or undetached with either system or
process scope.

Our thread yield test attempts to
measure the time required for a context
switch, similarly to one of the tests described
by Mueller [6]. In this test, two threads
repeatedly call sched-yield
(thr-yield on Sun platforms). When the
threads are bound to the same CPU, we
expect the threads to alternate using the CPU
and, thus, the total time divided by the
number of yields approximates the thread
context switch time. However, an auxiliary
program revealed that this is not always the
case under AIX. Under AIX, the initial thread
does not regain the processor until its child
thread has completed its yields. Therefore, on
the IBM platform, this test first creates a
proxy thread that measures the context switch
time. With this mechanism, the threads
alternate using the CPU as desired.

We also bind two threads to the same
CPU in order to determine the length of a
time slice. In this test, the main thread sets a
shared variable to zero and spins until the
variable is not zero. Similarly, the client
thread sets the variable to one and spins until
it is not one. Both threads repeat this behavior
M times. Each thread begins its time slice by
setting the shared variable and then expends
the rest of its time slice spinning. Thus, the
length of a time slice is the total time for this

test divided by 2A4.
The Pthreads API provides -several

mechanisms for communication between
threads. Our original intent was to apply the
LogP model to each of these mechanisms [2].
LogP models message passing communi-
cation costs with four parameters: latency (L),
which equals the time a message actually
spends in transit; the overhead of sending (os)
or receiving (oR) a message; the gap, g, which
is the minimum interval between message
sends (or receives); and the number of
processors, P. We present benchmarks that
measure the round trip time (2*(os + L + oR))
and the overheads for Pthreads communi-
cation through both mutexes and condition
variables. Our initial tests, based on the
method for measuring message passing send
overheads [3], indicates that the gap does not
exceed the “send” overhead for Pthreads
communication mechanisms. We leave lower
level tests that might reveal excess cycles for
future work.

Condition variables provide an
efficient mechanism for thread synchroni-
zation. A thread that is waiting on a condition
variable can be suspended until it receives a
signal of the condition. A thread must acquire
a mutex that protects the condition before
waiting on it. The mutex is released within the
call to pthread-condition-wait; it is
reacquired before the thread returns from the
call, but after the signal is received. These
semantics make a condition variable ping-
pong test straightforward: each thread alter-
nates between waiting on the condition and
signaling it. Since a thread can send a signal
even when no other thread is waiting for it (in
which case the signal is discarded), the time
to call pthread-cond-signal
repeatedly in one thread measures the cost of
signaling a condition, which is the “send’
overhead of this communication. Potentially
we could measure the receive overhead by
waiting on a condition that another thread is

pthread-mutex-unlock (lock[O]) -bpthread-mutex-lock (lock[O])
pthread-mutex-lock (lock[l]) bpthread-mutex-unlock (lock[l])
pthread-mutex-unlock (lock[2]) --.-..-bpthread-mutex-lock (lock[2])
pthread-mutex-lock (lock[3]) M-pthread-mutex-unlock (lock[3])
pthread-mutex-unlock (lock[l]) -bpthread-mutex-lock (lock[l])
pthread-mutex-lock (lock[O]) b-thread-mutex-unlock (lockLO])
pthread-mutex-unlock (lock[3]) -bpthread-mutex-lock (lock[3])
pthread-mutex-lock (lock[2]) bpthread-mutex-unlock (lock[2])

Main Thread Client Thread

Figure 1: Mutex Ping-Pong Actions (arrows show operation order)

continually signaling since the signaling
thread does not need to own the mutex. This
mechanism requires that the waiting and
signaling threads be bound to different CPUs;
otherwise the test tends to measure the length
of a time slice. Unfortunately, cache
coherence and memory bus contention
overheads can increase the time required for
receiving the signal, as the results that we
present for the IBM platform indicate. We
leave investigating these overheads for future
work.

We have also implemented a ping-
pong test for mutex variables. In this test, we
create four mutex variables, using the default
protocol. Initially, the main thread holds the
even indexed locks; the client the odd indexed
ones. We ensure the main thread begins each
ping-pong and that each pair of actions leaves
the locks in their initial states by ordering the
unlock/lock operations as shown by the
arrows in Figure 1. Thus, the time for a pair of
actions divided by four is the time required to
perform one mutex ping-pong.

We have implemented several tests
that measure the overheads of the mutex
operations. First, we ran our mutex ping-pong
test with the lock/unlock operations
performed only in the main thread. This no
contention test provides a reasonable estimate
of the sum of the overheads for the mutex
operations. Similarly to Mueller [6], our
mutex lock and unlock test provides an alter-
native estimate of this sum by successively

locking and unlocking the same mutex in the
main thread; our results indicate that the no
contention approach can underestimate the
overheads due to ILP effects. Finally, we
measure the individual overheads by first
measuring the time to lock a large array of
mutexes and then the time to unlock the same
mutex array. Note that the array indexing
overheads counteract any the ILP benefits.
The overall effect varies across systems.

4. Comparison of SMP Systems

Table 1 shows results for our
benchmark suite on three different platforms.
Our Digital results are from a cluster of
AlphaServer 4100’s running OSFl V4.0.
Each node of this machine has four 533Mhz
Alpha ev5 CPUs. Our IBM results are from
LLNL’s Combined Technology Refresh
(CTR) SP2, running AIX V4.3.2. Each node
of this machine has four 332 Mhz PowerPC
604e CPUs. Our SGI results are from Los
Alamos National Laboratory’s Nirvana Blue.
Each node of this machine has up to 128 250
Mhz RlOOOO processors. Finally, we have
obtained initial numbers for Sun’s implemen-
tation of Pthreads. The Sun numbers are from
an Enterprise 4000 with eight 168 Mhz
UltraSparc Is CPUs. This general purpose
interactive server at LLNL supports many
users and can be quite busy. However, it was
relatively quiet during our measurements.
Nonetheless we are unable to perform the

Table 1: Benchmark Results (in ps) -.

Thread Create

Condition Ping-pong

Unbound 58.8 3.7 9.4 24.3

Same CPU 13.4 37.8 N/A 24.2
Mutex Ping-pong

Different CPUs N/A 3.7 N/A 24.2

No Contention 0.274 0.638 0.434 0.448

Mutex lock and unlock 0.273 0.726 0.540 0.714

Mutex lock 0.483 0.343 0.25 1 0.321

Mutex unlock 0.495 0.478 0.296 0.417

time slice test reliably since it is a shared facility works at the process level. However,
resource. The nodes on the DEC cluster are testing indicates that it does apply to
also shared, although we were able to run individual threads. Unfortunately, testing also
most of our tests when no users were active. reveals that the operating system can override
Our IBM numbers are from a dedicated node, the CPU binding after a’small period of time,
while the SGI machine has facilities to particularly when the threads are bound to the
provide dedicated CPUs on a node. same CPU. Thus, we report SGI results only

Differences in the binding facilities of for the tests that use unbound threads.
the machines significantly affect the tests that Our numbers indicate significant
we are able to run. OSFl only provides a differences between the Pthreads implementa-
facility to bind all of a process’s threads to the tions. The SGI machine has excellent perfor-
same CPU; thus we do not report Digital mance for creating threads with process scope
results for threads bound to different CPUs. - although its has the second slowest
The situation on the SGI machine is worse. processors. The Sun machine also creates
The man pages indicate that the binding process scope threads quickly - if they are

detached. Creating a thread as undetached
allows the creating process to receive a return
status when the created thread exits. Since
this capability requires extra thread table
state, undetached threads are more expensive
to create, particularly on the Sun platform.
Our tests with system scope threads hung on
the SGI machine.

Although the Alphas are easily the
fastest CPUs, the Digital machine is the
slowest for our mutex and condition ping-
pong tests with unbound threads. Since we
expect unbound threads usually run on
different CPUs, this result indicates the
Digital Pthreads implementation needs to be
better optimized for threads running on
different CPUs. Also, Sun significantly
outperforms IBM for the condition ping-pong
test with threads bound to different CPUs
although the IBM runs at essentially twice the
clock speed. This result does not seem to
reflect an inherent difference between the
memory/bus systems of the machines since
IBM’s performance on the mutex ping-pong
test with threads bound to different CPUs is
excellent and significantly better than either
of the other machines. We plan to use either
lmbench or hbench:OS to explore differences
between the memory systems further [4, 11.
However, we believe the differences in our
results primarily arise in the Pthreads imple-
mentations.

5. Conclusions and Future Work

No Pthreads benchmark suite
currently exists; we have begun implementing
a set of benchmarks to fill this void. After
further testing and refinement, we will make
this Pthreads benchmark suite publicly
available. Our initial results show that system
hardware differences do not completely
explain significant differences between
existing Pthreads implementations.

We plan to expand our tests of
Pthreads functionality. Additional bench-

marks will measure the performance of
functions such as pthread-cond-broadcast
and pthread-cancel. We also are considering
tests that evaluate higher level functionality
that can be easily synthesized from Pthreads
primitives, such as semaphores or barriers.
We are also interested in the effect of using
different mutex protocols, although many
implementations currently support only the
default protocol.

This work has arisen during a project
evaluating the use of mixed programming
models on clusters of SMPs. Our overall goal
is to provide a benchmark suite that can
measure important aspects of mixed model
performance, such as the cost of a barrier
across all threads in all MPI processes. We
anticipate eventually extending this
benchmark suite to measure the performance
of OpenMP and other SMP compiler direc-
tives. Similarly to lmbench’s context switch
test, these tests will require a work
mechanism that we also expect to use with
additional Pthreads tests.

6. References

[1) A.B. Brown and M.I. Seltzer, “Operating
System Benchmarking in the wake of
Lnzbench: A Case Study of the Performance
of NetBSD on the Intel x86 Architecture,”
Proc. of the 1997 ACM SIGMETRICS ConJ:
on Measurement and Modeling of Computer
Systems, 1997, pp. 214-224.

[2] D.E. Culler, L.T. Liu, R.P. Martin and
C.O. Yoshikawa, “Assessing Fast Network
Interfaces,” D.E. Culler, R.M. Karp, D.A.
Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian and T. von Eicken, “LogP:
Towards a Realistic Model of Parallel Com-
putation,” Proc. of the 4th ACM SIGPLAN
Symp. on Principles and Practice of Parallel
Programming, 1993, pp. 1-12.

[3] D.E. Culler, L.T. Liu, R.P. Martin and
C.O. Yoshikawa, “Assessing Fast Network
Interfaces,” IEEE Micro, 1996, Vol. 16, No. 1,
pp. 35-43.

[4] L. McVoy and C. Staelin, “lmbench: Por-
table tools for performance analysis,” Proc. of
the 1996 USENIX Technical Conj, 1996,
pp. 279-295.

[5] J. May and B.R. de Supinski, “Experience
with Mixed MPI/Threaded Programming
Models,” High Performance Scientific Com-
putation with Applications, Technical Session
of the 1999 Ml. Con. on Parallel and Dis-
tributed Processing Techniques and Applica-
tions, 1999, submitted.

[6] F. Mueller, “A Library Implementation of
POSIX Threads under UNIX,” Proc. of the
1993 Winter USENIX Conji, 1993, pp. 29-42.

[7] R.H. Reussner, “User Manual of SKaMPI,
Special Karlsruher MPI-Benchmark,” Tech.
Report, University of Karlsruhe, 1998.

